Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Front Vet Sci ; 9: 1083605, 2022.
Article in English | MEDLINE | ID: covidwho-2232465

ABSTRACT

Swine enteric coronavirus (SeCoV) causes acute diarrhea, vomiting, dehydration, and high mortality in neonatal piglets, causing severe losses worldwide. SeCoV includes the following four members: transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV), porcine delta coronavirus (PDCoV), and swine acute diarrhea syndrome coronavirus (SADS-CoV). Clinically, mixed infections with several SeCoVs, which are more common in global farms, cause widespread infections. It is worth noting that PDCoV has a broader host range, suggesting the risk of PDCoV transmission across species, posing a serious threat to public health and global security. Studies have begun to focus on investigating the interaction between SeCoV and its host. Here, we summarize the effects of viral proteins on apoptosis, autophagy, and innate immunity induced by SeCoV, providing a theoretical basis for an in-depth understanding of the pathogenic mechanism of coronavirus.

2.
Viruses ; 14(12)2022 12 09.
Article in English | MEDLINE | ID: covidwho-2155315

ABSTRACT

Porcine epidemic diarrhea virus (PEDV), belonging to the genus Alphacoronavirus, can cause serious disease in pigs of all ages, especially in suckling pigs. Differences in virulence have been observed between various strains of this virus. In this study, four pigs were inoculated with PEDV from Germany (intestine/intestinal content collected from pigs in 2016) and four pigs with PEDV from Italy (intestine/intestinal material collected from pigs in 2016). The pigs were re-inoculated with the same virus on multiple occasions to create a more robust infection and enhance the antibody responses. The clinical signs and pathological changes observed were generally mild. Two distinct peaks of virus excretion were seen in the group of pigs inoculated with the PEDV from Germany, while only one strong peak was seen for the group of pigs that received the virus from Italy. Seroconversion was seen by days 18 and 10 post-inoculation with PEDV in all surviving pigs from the groups that received the inoculums from Germany and Italy, respectively. Attempts to infect pigs with a swine enteric coronavirus (SeCoV) from Slovakia were unsuccessful, and no signs of infection were observed in the inoculated animals.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Diarrhea/pathology , Feces , Swine
3.
Comput Struct Biotechnol J ; 19: 1072-1080, 2021.
Article in English | MEDLINE | ID: covidwho-1056514

ABSTRACT

The coronavirus (CoV) infects a broad range of hosts including humans as well as a variety of animals. It has gained overwhelming concerns since the emergence of deadly human coronaviruses (HCoVs), severe acute respiratory syndrome coronavirus (SARS-CoV) in 2003, followed by Middle East respiratory syndrome coronavirus (MERS-CoV) in 2015. Very recently, special attention has been paid to the novel coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 due to its high mobility and mortality. As the COVID-19 pandemic continues, despite vast research efforts, the effective pharmaceutical interventions are still not available for clinical uses. Both expanded knowledge on structure insights and the essential function of viral nucleocapsid (N) protein are key basis for the development of novel, and potentially, a broad-spectrum inhibitor against coronavirus diseases. This review aimed to delineate the current research from the perspective of biochemical and structural study in cell-based assays as well as virtual screen approaches to identify N protein antagonists targeting not only HCoVs but also animal CoVs.

SELECTION OF CITATIONS
SEARCH DETAIL